Browse Source

First pass at algorithm...it doesnt work right yet

tb-init-ui-render
Taylor Bockman 5 years ago
parent
commit
049d19b1e3
  1. 120
      clusterview/algorithms.py
  2. 8
      clusterview/colors.py
  3. 89
      tests/test_algorithms.py

120
clusterview/algorithms.py

@ -0,0 +1,120 @@
from .math import Math
from .points import Point, PointSet
class CentroidGrouping:
"""
A storage class used because Points are not hashable (since the x and y
can change). This allows us to do better than just dumping the grouping
into a dictionary with a long tuple pointing at an array.
"""
def __init__(self, centroid, points=[]):
if not isinstance(centroid, Point):
ValueError("Centroid must be a Point.")
if not isinstance(points, list):
ValueError("Points must be in a list.")
self.__centroid = centroid
self.__points = points
@property
def centroid(self):
return self.__centroid
@property
def points(self):
return self.__points
def add_point(self, point):
"""
Adds a point.
@param point The point.
"""
if not isinstance(point, Point):
raise ValueError("Point must be of type Point.")
self.__points.append(point)
def __eq__(self, other):
return (self.centroid == other.centroid and
self.points == other.points)
class Algorithms:
"""
A static class for handling and containing various computational
geometry algorithms.
"""
# Since all algorithms rely on a set of centroids it is stored here
# statically.
__centroids = []
@classmethod
def clear_centroids(cls):
cls.__centroids = []
@classmethod
def centroids(cls):
return cls.__centroids
@classmethod
def set_centroids(cls, centroids):
for c in centroids:
if not isinstance(c, Point):
raise ValueError("Centroids must be of type Point.")
cls.__centroids.append(c)
@classmethod
def euclidean_grouping(cls, point_set):
"""
Given a point set that EXCLUDES the centroids specified
it returns a map from centroid to array of points, where the array
of points contains the points with the smallest euclidean distance
from that point.
@param cls The class calling the method.
@param point_set The set of points from the UI.
"""
if not isinstance(point_set, PointSet):
raise ValueError("Euclidean grouping can only be calculated on " +
"PointSet types.")
if not cls.__centroids:
raise ValueError("No centroids specified.")
groups = []
for centroid in cls.__centroids:
groups.append(CentroidGrouping(centroid))
for point in point_set.points:
nearest_distance = float("inf")
nearest_centroid = None
for centroid in cls.__centroids:
current_distance = Math.euclidean_distance(centroid, point)
if current_distance < nearest_distance:
nearest_centroid = centroid
nearest_distance = current_distance
if nearest_centroid is None:
raise ValueError("Failed to find centroid nearest " +
f"to point {point}")
# We successfully found the nearest centroid to the point
# and we can add it to the list.
# TODO: Can CentroidGrouping be made hashable?
# This is relatively slow for large numbers of groups. If
# CentroidGrouping can be made hashable then this becomes O(1).
for group in groups:
if nearest_centroid == group.centroid:
group.add_point(point)
break
return groups

8
clusterview/colors.py

@ -5,6 +5,9 @@ class Color(str, Enum):
BLUE = 'BLUE'
BLACK = 'BLACK'
GREY = 'GREY'
RED = 'RED'
ORANGE = 'ORANGE'
PURPLE = 'PURPLE'
# A simple map from Color -> RGBA 4-Tuple
@ -13,5 +16,8 @@ class Color(str, Enum):
COLOR_TO_RGBA = {
Color.GREY: (0.827, 0.827, 0.826, 0.0),
Color.BLUE: (0.118, 0.565, 1.0, 0.0),
Color.BLACK: (0.0, 0.0, 0.0, 0.0)
Color.BLACK: (0.0, 0.0, 0.0, 0.0),
Color.RED: (1.0, 0.0, 0.0, 0.0),
Color.ORANGE: (0.98, 0.625, 0.12, 0.0),
Color.PURPLE: (0.60, 0.40, 0.70, 0.0)
}

89
tests/test_algorithms.py

@ -0,0 +1,89 @@
import pytest
from clusterview.algorithms import Algorithms, CentroidGrouping
from clusterview.colors import Color
from clusterview.points import Point, PointSet
@pytest.fixture(autouse=True, scope="function")
def teardown():
"""
Teardown function for after each test. The current pytest best practice
is to run a setup routine, yield, and then run your teardown routine.
"""
yield
Algorithms.clear_centroids()
def test_empty_centroids():
with pytest.raises(ValueError):
Algorithms.euclidean_grouping(None)
def test_wrong_point_set():
centroid_g1 = Point(101, 81, Color.ORANGE, 8, 800, 600)
centroid_g2 = Point(357, 222, Color.RED, 8, 800, 600)
centroid_g3 = Point(728, 47, Color.PURPLE, 8, 800, 600)
centroids = [centroid_g1, centroid_g2, centroid_g3]
Algorithms.set_centroids(centroids)
with pytest.raises(ValueError):
Algorithms.euclidean_grouping(None)
def test_euclidean_distance():
centroid_g1 = Point(101, 81, Color.ORANGE, 8, 800, 600)
centroid_g2 = Point(357, 222, Color.RED, 8, 800, 600)
centroid_g3 = Point(728, 47, Color.PURPLE, 8, 800, 600)
centroids = [centroid_g1, centroid_g2, centroid_g3]
point1_g1 = Point(67, 59, Color.GREY, 8, 800, 600)
point2_g1 = Point(116, 53, Color.GREY, 8, 800, 600)
point3_g1 = Point(144, 105, Color.GREY, 8, 800, 600)
point1_g2 = Point(388, 243, Color.GREY, 8, 800, 600)
point2_g2 = Point(358, 248, Color.GREY, 8, 800, 600)
point3_g2 = Point(426, 202, Color.GREY, 8, 800, 600)
point1_g3 = Point(750, 47, Color.GREY, 8, 800, 600)
point2_g3 = Point(741, 85, Color.GREY, 8, 800, 600)
point3_g3 = Point(700, 72, Color.GREY, 8, 800, 600)
# This PointSet is the PointSet that excludes the centroids.
point_set = PointSet(8, 800, 600)
point_set.add_point(67, 59, Color.GREY)
point_set.add_point(116, 53, Color.GREY)
point_set.add_point(144, 105, Color.GREY)
point_set.add_point(388, 243, Color.GREY)
point_set.add_point(358, 248, Color.GREY)
point_set.add_point(426, 202, Color.GREY)
point_set.add_point(750, 47, Color.GREY)
point_set.add_point(741, 85, Color.GREY)
point_set.add_point(700, 72, Color.GREY)
centroid_grouping_1 = CentroidGrouping(centroid_g1,
[point1_g1, point2_g1, point3_g1])
centroid_grouping_2 = CentroidGrouping(centroid_g2,
[point1_g2, point2_g2, point3_g2])
centroid_grouping_3 = CentroidGrouping(centroid_g3,
[point1_g3, point2_g3, point3_g3])
expected = [centroid_grouping_1, centroid_grouping_2, centroid_grouping_3]
Algorithms.set_centroids(centroids)
actual = Algorithms.euclidean_grouping(point_set)
assert len(actual) == len(expected)
# Since I don't want to figure out what grouping is where I'll accept
# the linearity of `in`.
assert centroid_grouping_1 in actual
assert centroid_grouping_2 in actual
assert centroid_grouping_3 in actual
Loading…
Cancel
Save