You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
15 KiB
561 lines
15 KiB
// Basic Javascript Elliptic Curve implementation |
|
// Ported loosely from BouncyCastle's Java EC code |
|
// Only Fp curves implemented for now |
|
|
|
// Requires jsbn.js and jsbn2.js |
|
var BigInteger = require('jsbn').BigInteger |
|
var Barrett = BigInteger.prototype.Barrett |
|
|
|
// ---------------- |
|
// ECFieldElementFp |
|
|
|
// constructor |
|
function ECFieldElementFp(q,x) { |
|
this.x = x; |
|
// TODO if(x.compareTo(q) >= 0) error |
|
this.q = q; |
|
} |
|
|
|
function feFpEquals(other) { |
|
if(other == this) return true; |
|
return (this.q.equals(other.q) && this.x.equals(other.x)); |
|
} |
|
|
|
function feFpToBigInteger() { |
|
return this.x; |
|
} |
|
|
|
function feFpNegate() { |
|
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q)); |
|
} |
|
|
|
function feFpAdd(b) { |
|
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); |
|
} |
|
|
|
function feFpSubtract(b) { |
|
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); |
|
} |
|
|
|
function feFpMultiply(b) { |
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); |
|
} |
|
|
|
function feFpSquare() { |
|
return new ECFieldElementFp(this.q, this.x.square().mod(this.q)); |
|
} |
|
|
|
function feFpDivide(b) { |
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)); |
|
} |
|
|
|
ECFieldElementFp.prototype.equals = feFpEquals; |
|
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger; |
|
ECFieldElementFp.prototype.negate = feFpNegate; |
|
ECFieldElementFp.prototype.add = feFpAdd; |
|
ECFieldElementFp.prototype.subtract = feFpSubtract; |
|
ECFieldElementFp.prototype.multiply = feFpMultiply; |
|
ECFieldElementFp.prototype.square = feFpSquare; |
|
ECFieldElementFp.prototype.divide = feFpDivide; |
|
|
|
// ---------------- |
|
// ECPointFp |
|
|
|
// constructor |
|
function ECPointFp(curve,x,y,z) { |
|
this.curve = curve; |
|
this.x = x; |
|
this.y = y; |
|
// Projective coordinates: either zinv == null or z * zinv == 1 |
|
// z and zinv are just BigIntegers, not fieldElements |
|
if(z == null) { |
|
this.z = BigInteger.ONE; |
|
} |
|
else { |
|
this.z = z; |
|
} |
|
this.zinv = null; |
|
//TODO: compression flag |
|
} |
|
|
|
function pointFpGetX() { |
|
if(this.zinv == null) { |
|
this.zinv = this.z.modInverse(this.curve.q); |
|
} |
|
var r = this.x.toBigInteger().multiply(this.zinv); |
|
this.curve.reduce(r); |
|
return this.curve.fromBigInteger(r); |
|
} |
|
|
|
function pointFpGetY() { |
|
if(this.zinv == null) { |
|
this.zinv = this.z.modInverse(this.curve.q); |
|
} |
|
var r = this.y.toBigInteger().multiply(this.zinv); |
|
this.curve.reduce(r); |
|
return this.curve.fromBigInteger(r); |
|
} |
|
|
|
function pointFpEquals(other) { |
|
if(other == this) return true; |
|
if(this.isInfinity()) return other.isInfinity(); |
|
if(other.isInfinity()) return this.isInfinity(); |
|
var u, v; |
|
// u = Y2 * Z1 - Y1 * Z2 |
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q); |
|
if(!u.equals(BigInteger.ZERO)) return false; |
|
// v = X2 * Z1 - X1 * Z2 |
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q); |
|
return v.equals(BigInteger.ZERO); |
|
} |
|
|
|
function pointFpIsInfinity() { |
|
if((this.x == null) && (this.y == null)) return true; |
|
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO); |
|
} |
|
|
|
function pointFpNegate() { |
|
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z); |
|
} |
|
|
|
function pointFpAdd(b) { |
|
if(this.isInfinity()) return b; |
|
if(b.isInfinity()) return this; |
|
|
|
// u = Y2 * Z1 - Y1 * Z2 |
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q); |
|
// v = X2 * Z1 - X1 * Z2 |
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q); |
|
|
|
if(BigInteger.ZERO.equals(v)) { |
|
if(BigInteger.ZERO.equals(u)) { |
|
return this.twice(); // this == b, so double |
|
} |
|
return this.curve.getInfinity(); // this = -b, so infinity |
|
} |
|
|
|
var THREE = new BigInteger("3"); |
|
var x1 = this.x.toBigInteger(); |
|
var y1 = this.y.toBigInteger(); |
|
var x2 = b.x.toBigInteger(); |
|
var y2 = b.y.toBigInteger(); |
|
|
|
var v2 = v.square(); |
|
var v3 = v2.multiply(v); |
|
var x1v2 = x1.multiply(v2); |
|
var zu2 = u.square().multiply(this.z); |
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3) |
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q); |
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3 |
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q); |
|
// z3 = v^3 * z1 * z2 |
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q); |
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); |
|
} |
|
|
|
function pointFpTwice() { |
|
if(this.isInfinity()) return this; |
|
if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity(); |
|
|
|
// TODO: optimized handling of constants |
|
var THREE = new BigInteger("3"); |
|
var x1 = this.x.toBigInteger(); |
|
var y1 = this.y.toBigInteger(); |
|
|
|
var y1z1 = y1.multiply(this.z); |
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q); |
|
var a = this.curve.a.toBigInteger(); |
|
|
|
// w = 3 * x1^2 + a * z1^2 |
|
var w = x1.square().multiply(THREE); |
|
if(!BigInteger.ZERO.equals(a)) { |
|
w = w.add(this.z.square().multiply(a)); |
|
} |
|
w = w.mod(this.curve.q); |
|
//this.curve.reduce(w); |
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1) |
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q); |
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3 |
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q); |
|
// z3 = 8 * (y1 * z1)^3 |
|
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q); |
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); |
|
} |
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm |
|
// TODO: modularize the multiplication algorithm |
|
function pointFpMultiply(k) { |
|
if(this.isInfinity()) return this; |
|
if(k.signum() == 0) return this.curve.getInfinity(); |
|
|
|
var e = k; |
|
var h = e.multiply(new BigInteger("3")); |
|
|
|
var neg = this.negate(); |
|
var R = this; |
|
|
|
var i; |
|
for(i = h.bitLength() - 2; i > 0; --i) { |
|
R = R.twice(); |
|
|
|
var hBit = h.testBit(i); |
|
var eBit = e.testBit(i); |
|
|
|
if (hBit != eBit) { |
|
R = R.add(hBit ? this : neg); |
|
} |
|
} |
|
|
|
return R; |
|
} |
|
|
|
// Compute this*j + x*k (simultaneous multiplication) |
|
function pointFpMultiplyTwo(j,x,k) { |
|
var i; |
|
if(j.bitLength() > k.bitLength()) |
|
i = j.bitLength() - 1; |
|
else |
|
i = k.bitLength() - 1; |
|
|
|
var R = this.curve.getInfinity(); |
|
var both = this.add(x); |
|
while(i >= 0) { |
|
R = R.twice(); |
|
if(j.testBit(i)) { |
|
if(k.testBit(i)) { |
|
R = R.add(both); |
|
} |
|
else { |
|
R = R.add(this); |
|
} |
|
} |
|
else { |
|
if(k.testBit(i)) { |
|
R = R.add(x); |
|
} |
|
} |
|
--i; |
|
} |
|
|
|
return R; |
|
} |
|
|
|
ECPointFp.prototype.getX = pointFpGetX; |
|
ECPointFp.prototype.getY = pointFpGetY; |
|
ECPointFp.prototype.equals = pointFpEquals; |
|
ECPointFp.prototype.isInfinity = pointFpIsInfinity; |
|
ECPointFp.prototype.negate = pointFpNegate; |
|
ECPointFp.prototype.add = pointFpAdd; |
|
ECPointFp.prototype.twice = pointFpTwice; |
|
ECPointFp.prototype.multiply = pointFpMultiply; |
|
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo; |
|
|
|
// ---------------- |
|
// ECCurveFp |
|
|
|
// constructor |
|
function ECCurveFp(q,a,b) { |
|
this.q = q; |
|
this.a = this.fromBigInteger(a); |
|
this.b = this.fromBigInteger(b); |
|
this.infinity = new ECPointFp(this, null, null); |
|
this.reducer = new Barrett(this.q); |
|
} |
|
|
|
function curveFpGetQ() { |
|
return this.q; |
|
} |
|
|
|
function curveFpGetA() { |
|
return this.a; |
|
} |
|
|
|
function curveFpGetB() { |
|
return this.b; |
|
} |
|
|
|
function curveFpEquals(other) { |
|
if(other == this) return true; |
|
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)); |
|
} |
|
|
|
function curveFpGetInfinity() { |
|
return this.infinity; |
|
} |
|
|
|
function curveFpFromBigInteger(x) { |
|
return new ECFieldElementFp(this.q, x); |
|
} |
|
|
|
function curveReduce(x) { |
|
this.reducer.reduce(x); |
|
} |
|
|
|
// for now, work with hex strings because they're easier in JS |
|
function curveFpDecodePointHex(s) { |
|
switch(parseInt(s.substr(0,2), 16)) { // first byte |
|
case 0: |
|
return this.infinity; |
|
case 2: |
|
case 3: |
|
// point compression not supported yet |
|
return null; |
|
case 4: |
|
case 6: |
|
case 7: |
|
var len = (s.length - 2) / 2; |
|
var xHex = s.substr(2, len); |
|
var yHex = s.substr(len+2, len); |
|
|
|
return new ECPointFp(this, |
|
this.fromBigInteger(new BigInteger(xHex, 16)), |
|
this.fromBigInteger(new BigInteger(yHex, 16))); |
|
|
|
default: // unsupported |
|
return null; |
|
} |
|
} |
|
|
|
function curveFpEncodePointHex(p) { |
|
if (p.isInfinity()) return "00"; |
|
var xHex = p.getX().toBigInteger().toString(16); |
|
var yHex = p.getY().toBigInteger().toString(16); |
|
var oLen = this.getQ().toString(16).length; |
|
if ((oLen % 2) != 0) oLen++; |
|
while (xHex.length < oLen) { |
|
xHex = "0" + xHex; |
|
} |
|
while (yHex.length < oLen) { |
|
yHex = "0" + yHex; |
|
} |
|
return "04" + xHex + yHex; |
|
} |
|
|
|
ECCurveFp.prototype.getQ = curveFpGetQ; |
|
ECCurveFp.prototype.getA = curveFpGetA; |
|
ECCurveFp.prototype.getB = curveFpGetB; |
|
ECCurveFp.prototype.equals = curveFpEquals; |
|
ECCurveFp.prototype.getInfinity = curveFpGetInfinity; |
|
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger; |
|
ECCurveFp.prototype.reduce = curveReduce; |
|
//ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex; |
|
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex; |
|
|
|
// from: https://github.com/kaielvin/jsbn-ec-point-compression |
|
ECCurveFp.prototype.decodePointHex = function(s) |
|
{ |
|
var yIsEven; |
|
switch(parseInt(s.substr(0,2), 16)) { // first byte |
|
case 0: |
|
return this.infinity; |
|
case 2: |
|
yIsEven = false; |
|
case 3: |
|
if(yIsEven == undefined) yIsEven = true; |
|
var len = s.length - 2; |
|
var xHex = s.substr(2, len); |
|
var x = this.fromBigInteger(new BigInteger(xHex,16)); |
|
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB()); |
|
var beta = alpha.sqrt(); |
|
|
|
if (beta == null) throw "Invalid point compression"; |
|
|
|
var betaValue = beta.toBigInteger(); |
|
if (betaValue.testBit(0) != yIsEven) |
|
{ |
|
// Use the other root |
|
beta = this.fromBigInteger(this.getQ().subtract(betaValue)); |
|
} |
|
return new ECPointFp(this,x,beta); |
|
case 4: |
|
case 6: |
|
case 7: |
|
var len = (s.length - 2) / 2; |
|
var xHex = s.substr(2, len); |
|
var yHex = s.substr(len+2, len); |
|
|
|
return new ECPointFp(this, |
|
this.fromBigInteger(new BigInteger(xHex, 16)), |
|
this.fromBigInteger(new BigInteger(yHex, 16))); |
|
|
|
default: // unsupported |
|
return null; |
|
} |
|
} |
|
ECCurveFp.prototype.encodeCompressedPointHex = function(p) |
|
{ |
|
if (p.isInfinity()) return "00"; |
|
var xHex = p.getX().toBigInteger().toString(16); |
|
var oLen = this.getQ().toString(16).length; |
|
if ((oLen % 2) != 0) oLen++; |
|
while (xHex.length < oLen) |
|
xHex = "0" + xHex; |
|
var yPrefix; |
|
if(p.getY().toBigInteger().isEven()) yPrefix = "02"; |
|
else yPrefix = "03"; |
|
|
|
return yPrefix + xHex; |
|
} |
|
|
|
|
|
ECFieldElementFp.prototype.getR = function() |
|
{ |
|
if(this.r != undefined) return this.r; |
|
|
|
this.r = null; |
|
var bitLength = this.q.bitLength(); |
|
if (bitLength > 128) |
|
{ |
|
var firstWord = this.q.shiftRight(bitLength - 64); |
|
if (firstWord.intValue() == -1) |
|
{ |
|
this.r = BigInteger.ONE.shiftLeft(bitLength).subtract(this.q); |
|
} |
|
} |
|
return this.r; |
|
} |
|
ECFieldElementFp.prototype.modMult = function(x1,x2) |
|
{ |
|
return this.modReduce(x1.multiply(x2)); |
|
} |
|
ECFieldElementFp.prototype.modReduce = function(x) |
|
{ |
|
if (this.getR() != null) |
|
{ |
|
var qLen = q.bitLength(); |
|
while (x.bitLength() > (qLen + 1)) |
|
{ |
|
var u = x.shiftRight(qLen); |
|
var v = x.subtract(u.shiftLeft(qLen)); |
|
if (!this.getR().equals(BigInteger.ONE)) |
|
{ |
|
u = u.multiply(this.getR()); |
|
} |
|
x = u.add(v); |
|
} |
|
while (x.compareTo(q) >= 0) |
|
{ |
|
x = x.subtract(q); |
|
} |
|
} |
|
else |
|
{ |
|
x = x.mod(q); |
|
} |
|
return x; |
|
} |
|
ECFieldElementFp.prototype.sqrt = function() |
|
{ |
|
if (!this.q.testBit(0)) throw "unsupported"; |
|
|
|
// p mod 4 == 3 |
|
if (this.q.testBit(1)) |
|
{ |
|
var z = new ECFieldElementFp(this.q,this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),this.q)); |
|
return z.square().equals(this) ? z : null; |
|
} |
|
|
|
// p mod 4 == 1 |
|
var qMinusOne = this.q.subtract(BigInteger.ONE); |
|
|
|
var legendreExponent = qMinusOne.shiftRight(1); |
|
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) |
|
{ |
|
return null; |
|
} |
|
|
|
var u = qMinusOne.shiftRight(2); |
|
var k = u.shiftLeft(1).add(BigInteger.ONE); |
|
|
|
var Q = this.x; |
|
var fourQ = modDouble(modDouble(Q)); |
|
|
|
var U, V; |
|
do |
|
{ |
|
var P; |
|
do |
|
{ |
|
P = new BigInteger(this.q.bitLength(), new SecureRandom()); |
|
} |
|
while (P.compareTo(this.q) >= 0 |
|
|| !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne))); |
|
|
|
var result = this.lucasSequence(P, Q, k); |
|
U = result[0]; |
|
V = result[1]; |
|
|
|
if (this.modMult(V, V).equals(fourQ)) |
|
{ |
|
// Integer division by 2, mod q |
|
if (V.testBit(0)) |
|
{ |
|
V = V.add(q); |
|
} |
|
|
|
V = V.shiftRight(1); |
|
|
|
return new ECFieldElementFp(q,V); |
|
} |
|
} |
|
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne)); |
|
|
|
return null; |
|
} |
|
ECFieldElementFp.prototype.lucasSequence = function(P,Q,k) |
|
{ |
|
var n = k.bitLength(); |
|
var s = k.getLowestSetBit(); |
|
|
|
var Uh = BigInteger.ONE; |
|
var Vl = BigInteger.TWO; |
|
var Vh = P; |
|
var Ql = BigInteger.ONE; |
|
var Qh = BigInteger.ONE; |
|
|
|
for (var j = n - 1; j >= s + 1; --j) |
|
{ |
|
Ql = this.modMult(Ql, Qh); |
|
|
|
if (k.testBit(j)) |
|
{ |
|
Qh = this.modMult(Ql, Q); |
|
Uh = this.modMult(Uh, Vh); |
|
Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); |
|
Vh = this.modReduce(Vh.multiply(Vh).subtract(Qh.shiftLeft(1))); |
|
} |
|
else |
|
{ |
|
Qh = Ql; |
|
Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql)); |
|
Vh = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); |
|
Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1))); |
|
} |
|
} |
|
|
|
Ql = this.modMult(Ql, Qh); |
|
Qh = this.modMult(Ql, Q); |
|
Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql)); |
|
Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); |
|
Ql = this.modMult(Ql, Qh); |
|
|
|
for (var j = 1; j <= s; ++j) |
|
{ |
|
Uh = this.modMult(Uh, Vl); |
|
Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1))); |
|
Ql = this.modMult(Ql, Ql); |
|
} |
|
|
|
return [ Uh, Vl ]; |
|
} |
|
|
|
var exports = { |
|
ECCurveFp: ECCurveFp, |
|
ECPointFp: ECPointFp, |
|
ECFieldElementFp: ECFieldElementFp |
|
} |
|
|
|
module.exports = exports
|
|
|