1 changed files with 0 additions and 41 deletions
			
			
		@ -1,41 +0,0 @@ | 
				
			|||||||
(car (cons x y)) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(car (lambda (m) (m x y))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
((lambda (m) (m x y)) (lambda (p q) p))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(lambda (x y) x))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
x | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(define (cdr z) (z (lambda (x y) y))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
2.5 - Given that we know the bases - 2, and 3, we only need to find the exponents. | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
For example, 6 can only be represented one way - 2^1 3^1, meaning our pair of numbers a and b are 1 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
So, cons is simple: | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(define (cons x y) (* (expt 2 x) (expt 3 y))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Now we're left solving for a and b | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
log(2^a * 3^b) = alog(2) + blog(3) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
call our "cons" value x | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Because integer factorizations are unique we only need to find the biggest power of two and three that  | 
					 | 
				
			||||||
go into the number. | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(define (power-of-x value base)  | 
					 | 
				
			||||||
  (define (iter current-power) | 
					 | 
				
			||||||
    (if (< ((expt base current-power) value) | 
					 | 
				
			||||||
	(iter (+ current-power 1)) | 
					 | 
				
			||||||
	(current-power)))) | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Then with this we can write car and cdr as | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
(define (car int) (power-of-x int 2)) | 
					 | 
				
			||||||
(define (cdr int) (power-of-x int 3))  | 
					 | 
				
			||||||
					Loading…
					
					
				
		Reference in new issue